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A THREE-DIMENSIONAL ADDITION THEOREM FOR ARBITRARY FUNCTIONS

INVOLVING EXPANSIONS IN SPHERICAL HARMONICé‘ !
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ABSTRACT /5377

For any vector f = X +4£2 and expansion is derived for the
product of a power §r  of its magnitude and a surface spherical har-
monic YLM( 9,?) of its polar angles in terms of spherical harmonics
of the angles (91, fl) and (92, ?2)"’ The radial factors satisfy
simple differential equations; their solutions can be expressed in terms
of hypergeometric functions of the variable (r< /r5)2 , and the leading
coefficients by means of Gaunt's coefficients or 3j-symbols. A number
of linear transformations and three-tefm recurrence relations between
the radial function are derived; but in contrast to the case L =0
could be

no generally validj expressions symmetric in r., and

1 )

found.

By interpreting the terms operationally an expansion is derived
for the product of YLM( 8, ?) and an arbitrary function £(xr) . The
radial factors are expansions in derivatives of f(r>) ;s for spherical
waves they factorize into Bessel functions of r, and r, in agree-
ment with the expansion by Friedman and Russek.

The 3j-symbols are briefly discussed in an un-normalized form; the
new coefficients are integers, satisfying a simple recurrence relation
through which they can be arranged on a 5-dimensional géﬁéialization

. : U

of Pascal's triangle.
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A TEREE-DIMENSIONAL ADDITION THEOREM FOR ARBITRARY FUNGTIONS
INVOLVING EXPANSIONS. IN SPHERICAL HARMONICS

1. Iatroduction

=

n a preceding paper1 (referred to as I) a generalization was
derived of Laplace’s expansion for the inverse distance between two
points Q1 and Q2 , specified by the vectors T and r, or the
spherical polar ccordinates .(r1,91, ?1) and (rz, 82,?2) . It was
shown that in the expansion for an arbitrary power of the distance in

terms of Legendre polynomicals cf (cos 912)

|z, - If’1]n = ZRnI(rl’rz)PZ(“’s 912) ; | M

the radial functions R af €30 be expressed in terms of hypergeometric
functions of the argument (f< /;>) 5 and by giving the expressions an
operational interpretation am addition theorem was obtained wvalid for
arbitrary analytic functionms of [r2 - rl[ |

A more general addition theorem would apply to functions
HQSZ - 51) or 'H(EQ + 51) depending on the direction as well as on
the magnitude of the vector argument. In Cartesian coordinates such an
expansion is given by Taylor’s theorem in three variables; in many
physical applications, however, it is of advantage to specify the
dependence on the angles in terms of spherical harmonics. These har-

monics can be defined in several ways in terms of the associated

Legendre functicns Pl m(x)

le[ _ mey 2, %|m| dlmlPl (x)  PIM) m (=)™ T(x) (£ -m)!
. ®) = () (l-x7) W PP X'V, = 7 Oy gy
(2)

The most useful definitions are for the un-normalized harmenics

o o wm @ ™ e

R. A. Sack,;University of Wisconsin, Report WIS-TCI-20.



eim? ljem(cos 23

(3a,b)

n _ ing pln] n
% 9,7) "7y (cos$) 0 9,7))
and the normalized form

Ylm(9,f) - ['(2l+1)(l-m).'/41r(l-hn).']']5 ei“‘f’pemfccos,?) i (3¢c)

The functions Pl (cos 912) in (1) can be written as

4
- N -m 9 m
m=-4
with corresponding expressions in terms of @ or Y (cf. B 3.11.2)2.
—\The purpose of the present paper is to derive the expansion for the

product of a spherical harmonic and a power of the radius

Vo = T 1, 9,7) - ZR(N;L,Q,Q,M,ml,mz;rl,rp

(5)

, g
L1, "%, pp ‘04 D

and its generalization for functions of the type f(r)_.aLM( 9,?) . In

contrast to I, the vector £/= (r, 9,90) denotes the sum of and

r
~'1
Iy s the corresponding expressions for the difference (r2 - 51) differ
from those in (5) at most by a sign, corresponding to the parity of 11 .

The spherical harmonics in (5) could equally well be expressed in terms

o and RY dif-
fer from R = R_a_ only by a factor which is easily calculated from

of & or Y ; the corresponding radial functions R

(2) and (3). In view of the transformation properties of the normalized
functions Y their use would have the advantage that the azimuthal

quantum numbers m =M , m, , m, can affect the expressions

Bateman Manuscript Project, A. Erdélyi ed., Higher Transcendental
Functions, (McGraw Hill, New York, 1953). Sections and formulas in
this work will be referenced directly by the prefix B.




RY only through the Wigner coefficients or 3j-symbols3’4’5. The
writer's personal preference is for the functions (). , as they do
not necessitate the use of square roots; the place of the 3j-symbols
is then taken by un-normalized 3j-coefficients which have the advantage
of being integers; as shown in the Appendix, they can be arranged on a
5-dimensional generalization of Pascal's triangle.

For some specific cases expansions of the type (5) have been given
before; an addition theorem for solid spherical harmonics (N=L or
N=-L-1) have been given by Rose6 and for spherical waves by Friedman
and Russek7; more recently similar results have been re-derived by
Seatons. The radial functions in the expansion (5) for the general
case could be obtained by combining these results with those of I, i.e.

by considering the product
n L M
Vgiy = T T L(g,?) , n = N-L R (6)

but this would involve the summation of multiply infinite series.
Instead, the derivation of the functions R for arbitrary values of
N will be based, as in I, on the solution of the set of differential

equations

v. v = V.V s (7a)

\A ' = (N-L) (WHALV 1 . (7b)
b

E. P, Wigner, Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra (Academic Press, New York, 1959).

4 A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton
University Press, Princeton,1957).

> M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and
Sons, Inc, New York, 1961).

6‘M. E. Rose, J. Maths. and Phys. 37, 215 (1958).

7 B. Friedman and J. Russek, Quarterly Appl. Maths. 12, 13 (1954).

8

M. E. Seaton, Proc. Phys. Soc. 77, 84 (1961).



These solutions are again expressible in terms of hypergeometric func-
tions, and leading coefficients are determined by comparison with
special known cases; it is found that these constants can always be
expressed in terms of integrals of products of three harmonics which
may be given in their normalized or un-normalized forms. An alternative
method of deriving these coefficients could be based on the transforma-
tion properties of the spherical harmonics, but neither this appfoach,
nor any other group-theoretical arguments will be employed in this paper.
The only use made of the extensive theory of normalized harmonics B
will be of the relation between the integrals over triple products
(Gaunt's coefficients)g’10 and the 3j-symbols, and the results obtained
in terms of the functions {L will be reformulated in terms of the
normalized harmonics Y . |

The solutions of the equations (7) satisfying the appropriate
continuity conditions will be derived in section 2, and the results
discussed in section 3. A selected number of recurrence relations are
given in section 4, and in section 5 the formulas are given an opera-
tional form applicable to arbitrary functions of r . The special
case that one of the vectors points in the direction of the polar axis

will be considered in a later paper.

2. Mathematical Derivation

To avoid an excessive use of subscripts, formulas in this section
will be derived for the range r, > only. The dimensionality of
(5) requires that the functions R are of the form

I
ROV, {msry ) = A IIZCNs(rler)s : (8

The differential equation (7a) substituted in (5) leads to

J. A. Gaunt, Phil. Trans. Roy. Soc. A 228, 151 (1929).

10
M. Rotenberg, R. Bivins, N. Metropolis and J. K. Wooten, The 3-j

and 6-j symbols, Technology Press, MIT, Cambridge, Mass. (1959).
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R,z e R _ ¥R .2 ® R
S | or, /1(/1“"1) 2 I T /2([2“) 7 > O
r r r 2 2 T
1 1 2 2
which together with (8) yields the recurrence relations
(s+2)(2,1+s+3)cN,s v = ®-l-bsya-bpbrae . (10)

The leading term in the power series (8) is of degree s = 0 since
the other possible solution, beginning with s = -2{-1 would lead to

a singularity as r, - 0 . As in I, the solution is best expressed in

terms of Gauss' hypergeometric function

F(a,/{;X;z) - i(u)w(/s)w z"/[(({/)w w.'] (11)
(]

where11

(), = 1 5 (o0, = (o30) = o{(a+l)e--(K4u-1) = T (o) /().

o
(12)

1f we abbreviate

A= sanlly , A=A, A = AL A, - ALY,

(13)
and use n as defined in (6), the solution Jf(8)‘ and (10) can be

expressed in the form

R(N ,,m rl: 2)

- xanLme N P[50 5 - 1wl + 35w ] (e
l

= K(N,{,m)rl

1:2n+1.-l, F(A -kn, -%-3n- ;\1;!1 + %;rlzlrzz) _ (14b)

The archaic form (o ;w) will be employed mainly when w carries
a subscript.



As the functions _f)ze have the parity of ° € on 1nvers10n, :
(9 f) = (n- 8, 1(4-?) s K(n,[m) can take non-zero values only if

L-[l-lz = even , ‘ -~ (15)

and hence all the quantities defined in (13) are integers. The 1eading
coefficients K in (14 'a, b) satisfy the recurrence relation, in

view of (7b):
n(n+1+2L)K(N-2,{,Ln) = (n-22‘)(n+1’+2/'{ 1)K(N,!;Ln') . | - (16)
This means that K depvends on n through the factors
(-3n; ) (-3-50-L; A,) | -oan

the only other way K could depend on n would be through an addi-
tional, periodic,factor of period 2; but according to the results of T
the factor rn in (6) does not show any such periodicity and the solid
harmonics are independent of n ; hence (17) describes the full depend-
ence of K on n . To find the absolute value of K(N,f,g) we first

consider the case N =1L or n = 0. Making use of (B 3'.7:25) and its

converse
. m Za | | /.
le(cos 9)e1mf’ = i—zét—(;?-L [E:_os 9+ isin9cos(f-1|f)}_ elmwd\y s

/ (18a)
0 toiadeonigni]’ - T =L n o hy D
[cos isin¥ cos (f ] A im((m)! e cos e

we obtain for the solid harmonics by means of the binomial thedrem

(18b)

M

T : ,
L .QLM(S,r) = %I%uf(zl+ixlcosw+iylsin¢+z +ix cosw+1y2simjr) e de
o

4

- [ M, my
= ' ' e | -1 N

(19)




the sumi to be taken over all

m,+m = M ;[1+€2 = L . (20a,b)

1 2

This is the un~normalized form of Rose's addition theorem6. Multiplica-
tion by & gives rise to terms for which (20b) is no longer satisfied.
For positive even n equation (19) of I shows that in the expansion

(1) for |r1 + r2|n the radial coefficient of Py is ;\..'(1?11'2)a /(35)1

for A = ¥n' and vanishes for A > %n . Hence the leading term in

R([1+[2,{,2‘) s in view of (6), (13) and (19) is made up of terms

\

, L ¢ |
Q\.rl ! 1'2 2 Z(-)I“' (L+f\§{).'

&

P ”'x\‘/‘ s M
c 0w N, T N'w N, o .

A
A f (21)

The product of two surface harmonicg of the same coordinates (9,f)
3-5,9,12,13

can be expressed as a sum of spherical harmonics

m, miu
-qu/“ tofpa *
(22)
This leadingy term can be found most eaisily by a comparison of the
in view of (2) and Rodrigues'

leading coefficients of P(m(x) , whic
formula (B 3.6.16) are

. ' -
I O O e s s AT (23)
27 L (l-m)!
The leading coefficient K in (14) for N = [1 +(2 thus becomes in
view of (21) and (22) \
12

L. Infeld and T. E. Hull, Rev. Mod. Phys)| 23, 21 (1951).

13 E. A. |Hylleraas, Math. Scand. 10,:189 (19{:32).

bl



Mm1 m2

(24)

(L-I-M).'((l-ml).'(lz-mz)f(Zl)i'/l.'[z.' U(L ¢ (2)

_ MM
xprfolm = of SRl LY RO AHPIAL

where the symbols U represent the sums

l ¢ 2 A 2 A
" Lt & ) Z(_)-A+/u.+M 2 ) (24, ) 2 ) (25
M m m, m 1+/u )1-m2-7u Ajtm + 7

provided (20a) holds. They are related to the Wigner 3j-symbols

. s .. s %
i; 3, 3 i3y g\ T 3 £2 2)!
1-2-73\ _ 1-2-3 ' - 7s
0 m, m, m ) m, m, m ‘.(ZA+1) " s:l;rl (js-ms)‘!(jsh“s)! e
1273 17273
where, for this equation only, we have put
A Gty 5 A = A-i 20 12,9 (27)

In the present context these un-normalized 3j-symbols are required
for integral values of (, m and A only, but, as shown in the
. - ~ -~

Appendix, their definition (25) also covers the case of half-integer
parameters. For integer A they are invariant under a permutation
of (1,2,3) in (26) and under a simultaneous change of sign of all the

m_ .
s
The expression (24) can be simplified by the explicit use of Gaunt's

9,10

coefficients for the integral over the product of three associated

Legendre functions. If we put

L4 ¢ 1 y . .
I_Q_ M-m-m'[| [1 PL (x)l’e (X)Pe: (x)dx (28)

where the azimuthal numbers add up to zero, these integrals can be

expressed in terms of the U's as

|




A 4 @ ad w)t(dmmytaant Al (Ll 4 |
4 ]l.u)' )TT' 1! ( s (29)

M e Bk
so that (24) becomes
M LA L b
CHALCHA) '
1 2 Qiu “m; -m,
Using (17) ve find for the leading coefficient for arbitrary N

3 (-¥n;2)(--¥n-1; 4,)
kN, o) = (o) : 2yl +t,,lm)
': i’('k'st2) 1l 2~;‘

(€, +%) (-kn;A) G +n;L) Ll /
(A I 2 = 1( ) (1)
0N

Ttmll)(z +n; 1) -3, -nz

3. Rlasusaien of she Radisl Punstions B
Acsording te (14) and (31) the radial functions R in the expansion
(5), ave givem, for >, by

.(':!123313'3) .- .'(!:.-)"(.:!3'111'2) | (32)
vhere
-l
R Y ( 12 \ (33)
~w a N .-1 _.z )

(-¥0; )3 +niL) o .t
‘ 5 4
algamly 2

| Y (.:!S'io'z) s "4
(34)

t’(l'h.'i-h' 13,"‘ 2:’ 2"1 »

and the sysbels are sxplained in (6),(11)-(13), (25),(20) snd (29); for
L2 >uy cho oubgcripts 1 ond 2 should be interchanged. The equation
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(32) factoxlzes the functlons R(N l ) into a’ constant K'a ;ndependent

1‘ i

v of N: or: n and a'ﬁunctlon R” 1ndepepdent pf the a21muthél quanﬁum,

umbers 1m .:“The~ prec1se seperatlon is, to some extent‘ é%bltraryv
any dependence on ‘( or 2 only can be drawn ;nto e1ther factor,éghe
selection (33), (34) was chosen pr1mar11y to give the recurrence rela-

tions of Section & thelr s1mp1est form i ;n«thelge§e of §§h?r£991%xu
S A A a ‘ml!y: : :n B

4
N

oy A A BT TpE
symetry Vi ‘“_ 4 : :;». A :\Y S
= =1 FRE ) = 0 SEIETT =? v_' g Capte ! [x‘é wh A ?___‘7 h P AW gg’u‘.ﬁ:?.i

L=u= AP0 07, m2 A fz‘ A f

« ) ‘ A G IUCE I ¢ i (35)

fx'; , ‘.“f: K,*"f, 3 (l*%) v _? R R § o {,,» T LK
- o " L,, Mo gL «. '\m

and the R' d1ffer from the funcxlons R l of (1) and I only by a

E : . KIS % n
factor Gl+%) £ : B x~ SR RLE AL .dif e P .

If the spherical harmonlcs in (5) %;g g1ven in the1r normalized
form !e (3c), the analogous rad1a1 functlons RY can be factorized as
in (32)

";1;\”,*' TR i ;’, N L R
CASEUE R A

LpEb R L H Tiys Hy
B ACK, (m ) xY((m'm ( rl, 2) s ‘(;:fg)
ERL T RS o S SRR I

M

where R' remains unaltered as in (34) whereas in view of (3c) and (26)

ER '1 % J{N AE BAEE "‘ W ! Ao gy ‘,'1"' Wik
Gm = 2w @y, |/2m2) : (37
~ LR R
Bere ' .
PR R T TS R ¥ LA A Y
My, Ay = (M [(glﬂ)(2l'+,;)(gL+1){anf” ( Wi 3 )
4 TR e -Mmm' 000
(38)

[ [x2es. f)] (9 f)Y (9f)sin9d g

15 the integral of the product of three normalized harmonics taken over
the whole unit spherelo. In view of the properties{of the 3j-symbols
the coefficients K' , and hence the radial functions R , will be

non-zero only if the conditions

1(1'(21 SLS[l"'/z (39




are satisfied as well as (15) and (20a). The functions R will also
vanish, in view of (13), (32) and (34), if

L<NK< (1+4 s N even (40a)
or
Lswm1 < l-f, R (40b)
The hypergeometric series are polynomials if
2

N2(1+,2 , N even or N> /1-/-1 , n odd ; (41

if either ...equality holds, they reduce to the leading term unity. The

particular case N = L has been discussed in (19) and (20); if

N = -L-1 the only non-vanishing functions in (5) for r, > r are
P) y 2 1
those for which 12 =L+ 1° and for these we have, in view of (22)
9,11
or from
[ 5 ' ' MY !

. 1.,11,1,+l1 M .2(21,5.__.(211).(/1+L).(11+L+m1 M) ! @

= - AN AT E L '
N M,-m, ,m M (24 2L+ 'L T (L-M) T (4 my ) !

so that (5) and (32)-(34) yield

r-L-I'ﬂLM(g’f) =; (_)l+m (/ +L4m-M) ! /114

@) T (LM “1 %2

! (43)

D)8, A 70,9,

This corresponds to the expansion given by Rose for normalized
"irregular™ solid harmonics6.

As in I the transformation theory of the hypergeometric functibns
can be applied to the expression (34) for the functions R' . Thus
(B 2.9.1,2) or eq. (20a) of I, leads to

11
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4
Gy DG L) ) (e O

3 N+ O, ol
Gl G s A)) T

R'(N,!;rl,rz)

(44)

F(A+2-I-*35n,2 +»‘5n+12,[+ 2,r )

which shows that the radial functions are also rational in r1 and

r, if %(,1+[2+N) +1 or »’5(/1-(2+N+1) are negative integers.
Similarly (B 2.10.1) or (20b) of I yield

n+1(_%n; 2)(% +%n;L) (2+n;L) 4 N- 4,
1’7 < o <

R'(N, ( r
(1+n; A+1) G +m; A 2 +an; )

X F(X -kn,-%-%n-1 1;-n-l-L:a(rzz-rlZ) /rzz) +

A 4
() * @ D 1 (r,-r H?
) 2 1 (2 ™y s
(n+2;L+1)2n+2 r2N+4+m4
2__ 2
3 T2 "My
x F(A +2+3§n,§ +int+A 2;n+3+L; ——T) (45)
r
2

where the coefficients have been simplified in view of the properties
of the gamma function, (B 1.2.6) and (B 1.3.15) or (23) and (25) of I.

This equation shows the nature of the branch point as r, approaches

1
r, the difficulties arising for integer values of n have been

discussed in I, following eq. (22); the result is either a polynomial

or a series involving logarithmic termé./ In the case L =0 , it was

shown in I that by means of quadratic transformations applied to the
hypergeometric functions the radial functions Rnl could be expressed
in several forms symmetric in rl and Ty s involving power series in
r2/(r1-l"1‘2)2 orin r 15 /6‘12+r 2) . The same transformations
can be applied whenever / 9 3 regardless of the value of L ; for
general values of /1 and [ (34) shows that even the leading

coefficients are different as rl < r2 or r1 > r, . In consequence
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it is unlikely that analogous simple symmetric expansions exist in the
general case. On the other hand the leading coefficients in (45) are
invariant for r; 2 Ty s and together with the symmetry of the recurrence
relations derived below, this suggests the existence of symmetric
expansions 1nv01v1ng power series in the two arguments rlrzl(r 2+r22)
and (rlz- )4%1 +r, ) or similar variables, though presumably involving
the one variable only to a finite power depending on ][& (2l . So-
far the writer has been unable to derive such expansions.

Quadratic transformations for arbitrary hypergeometric functions
have recently been derived by Kuipers and Meulenbeld14 in terms of
generalized hypergeometric functions or MacRobert's E-functioms,

(c£. (B 4) and (B 5)). This generalization, however, is not quite
relevant to the problem at this stage, as it corresponds to a generaliz-
ation of the transformation from (27a) to (27b) of I, and not of the
transformation from (19) to (27).

It might be considered that the expansion (5) would simplify if
one of the vectors, say r; points in the direction of the polar
axis; for this choice ail the Legendre functions of cos 91 are 1 or O,

according as m, = 0 or m, # 0 , and hence for all non-vanishing

1 1

terms m, = M. The individual terms in (5) are therefore considerably

2
simpler than in the general case; on the other hand, because of the

1 the rotational quantum number él’ ceases ’

to be meaningful and any consistent expansion making use of this

restrictions imposed on

restriction should reasonable involve an implicit summation over / )
i.e. over products involving 3j-symbols. From an analytic point of

9,15,

view these symbols are generalized hypergeometric series (cf. (B 4) and
of unit argument and all integer parameters, and any expansion involving
such functions is likely to lead back to functions of at least the same,
and possibly higher, complexity. This has indeed been found to be the'

case, and in order not to complicate any further the mathematical

L. Kuipers and B. Meulenbeld, J. London Math. Soc. 35, 221 (1960).

15 P. E. Bryant, Tables of Wigner 3j-symbols, University of Southampton,

Research Report 60-1 (1960).
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apparatus required for the present paper, the case 191 = 0 will be

considered separately in a later publication.

4., Recurrence Relations

The relations between contiguous hypergeometric functions
(B 2.8.28-45) can be used, as in I, to derive linear recurrence relations
between any three radial functions R' for which L , [1 s €2 and AN
differ by integers only; the recurrence formulas between the coefficients
K' of (33) or (37) are known from the theory of angular momentum3'5’9’10.
Equation (14a) shows that the functions F depend on n and L only

through their sum N ; according to (34)

?
R (v, 142,4; ,4)) | 3MML __ 34nt2L “6)
R'(N,L, 7., (2) L-N n :

It is therefore sufficient to drive any further relations for changing

values of the angular quantum numbers L , [1 and é; only, leaving
n = N-L = const ; (47)

the value of N can then be increased or decreased in steps of 2 by
means of (46). In view of the larger number of independent parameters,
the number of recurrence relations for even small changes in i? will be
considerable; we therefore confine our attention to the following special
cases:

(i) Between any two of the three functions R' , none of
the numbers L , (1 and !; differ by more than unity.

(ii) One of the angular quantum numbers remains constant,
the second varies by at most unity, and the third by at most two units.

There are 8 inequivalent 3-term recurrence relations of type (i)

and 12 of type (ii); for the sake of brevity only those parameters
will be indicated which differ from L , [1 s (2 , €.8.

R'(L+,éa-) = R'(L+1,€1-1,€;) (cf. B 2.9), and N 1is understood to

vary according to (47). The formulas are:




@ o) (g, 2 R =

( ;\1 + % +n) 1 R (L+, /2+) - (A o+ —g— +3§n)r1R'(L+,(1+)

H

(A-1-4my e Rt (k) - (A +2tmy e rr (k)

(A +2#m) e RV (0, 6 4) - (A-1-am) e R (14, 4 -)

-(% +)t2+35n)rzn-(L+, [-) + (11+ % +m) £ R (Lt /1_) :

(yHmtl) " 'R' =

(A -3~ [rZR'(L-,(2+) + rlR'(L-,(1+)]

A [epan b - rrras, g

(3tint ;{2)-1 [-i:rzR'(L-,(2+) + rlR'(L-,fl-)]

L]

(A +1+%n)-1 [rzR.(L':( ') + rlR'(L': (1')] H

Lo -

~~

-

(35+35n+1._)r2 lR'(L-,[ 2+) + R-'(L-,fz-)

r, L(A 26 (A + 3 R e, ) - (3130 (A,+ 3+ x

x rvarly- |7 &-23- +!5n+L)(r22-r12)]

(IZIII)E ( Rl'i' % +%n)R'(/1", (2"') + (x “1’;5n)R'([1';[2')]

(ry/r)) [(A+2+—’5n)R'(4+, (2+) + (% 3+ 2)R'(/1+,/;_-)] ;

(483)

(48b)

(48¢c)

(48d)

(49a)

(49b)

(49c¢)

(494d)

(50a)

(50b)

(51a)

(51b)

15
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(L+n+2)(% +%n+L)r2R" =

Gt 5 (r,) 2or IR (Lo, 42 + (A -1-8m) (A it RO (L, ) (522)

- (eHEmL) (£, 21 IR (L, &) + (24 Aim) (A [+imt DRY (L, 4 . (52b)

The other 6 relations of the type (ii) are obtained by an inter-
change of the subscripts 1 and 2 in (50)-(52). Although the resulting
equations are invariant on interchanging ((i)rl) and ( 2,rz)Jtheir
derivation is not symmetrical; thus (50) follows from (B 2.8.32,37),

but the corresponding equations for varying !1 from

YQ DL 7] =« farcas, fr g (53)

and from (8 2.9.1,2). The equations (48a,b) follow from (B 2.8.38,43),
and (49c,d) from (B 2.8.35,42); the remaining relations are derived
from these by linear elimination, though to prove (51) the values of

L in (48) and (49) must be lowered or raised.

It should be remembered in applying the recurrence relations
§48)-(52) that they do not apply to the full radial functions R of
(32); these latter will vanish whenever the triangular condition (39)
is violated because of the factor K' in (33), whereas the factors
R' will have perfectly well defined, usually non-zero, values in
accordance with (46) regardless of the relative values of L ,'(1 ,

and [2 provided only (15) is satisfied.

5. An Operational Expansion for Arbitrary Functions

As in I the way in which the power N enters into the expressions
(32)(34) allows the functions R'(N,ﬁ;rl,rz) to be expressed in
operational form. For r, > Ty the expressions differ according to
the relative magnitudes of L and [2 . For the factor in the general

term in (34), which depends on N , we have usiné C (LY~ (14)
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[I 2&4‘28 l, -2s

) (SL-3N; 2 +5) (-3-5N-31; A ) r)

L-¢ C N2 : A +s
_ r;l'-e" (.1:_ a_a_ erL ) 5 - L(L;'l)_] : rN+1 , Li> /2 (54a)
t, or, Brz r, :

2
(54b)

Hence any function £(r) which can be represented as a power series in

= 1 o b1 -1-@/‘32 L(L+1) 'x" *S N1 v </
= T r, or, T2 i3e 2 .2 r > S
[ 9%, )

r we can expand, in analogy to (5),

. Ml »y .
f(r).Q,f‘(i),f) - Zx'({,pfw{;rprz) 10} (91,791) _(24 <&2,fz>
{
' (55)
where K' 1is given by (33), or by (37) if normalized surface harmonics

are used. For the radial functions we obtain from (34) and (54)

£ 12
BCrpr) = 200 ) GFFzen s > (56)
7]
(for the double factorials see (43) of I) where
L-/, 2 A+s ~ '
_ 14 /1 a4 2L j_d”  L(L+1) Z 7
g, (lry = 1 - dr) ) 2 2 i)
~ 2 2 dr2 r,
L > f'z (57a)
_ KILL b -1-L | a? _ LA+l )‘z.*'s : syl <.
T2 [T, ar T2 2 2 2t\I) | s 2 T -
2 2 dr r :
2 -T2
(57b)

Alternatively the powers of the operator (r2-1d/dr2) can be put last
with the result

"~ 2+s L-( -

ley o L 42 _(2([2+1) 1 T a7 * L

8s'v0T2) T % 2 2 REAETR T 2 2 >
2 {dr r r. 4l "2 "72
2 2 2
1> {, (s8a)
e x +s
1 | 4 _(2(12“) ! A L_g_\z&"‘ £(ry) Led
N r, P 2 . 2 2 r2 drzj c L 4 - 2
) 2 2
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The quadratic operators occurring in (57) and (58) can be factorized, but
not expressed as squares; hence the operational factorization of fl
in (48) of I in terms of Bessel functions of a differential operator
does not appear to have a simple analogue in the general case.
The expressions (56)~-(58) factorize analytically if f 1is a
spherical Bessel function

Br) = w@n , w o= i,y b, n? (59)

in the usual notation, satisfying
[dzldrz - L(L+1)/r2][rf(r)] = -KPri(r) | (60)

In view of (B 7.2.44-46,52,53) and (B 7.11.5-13) we have

- ! -

(z"la7dz)® [z wt(z)] = ()% st[+s(z)

14 Z. b

-1 s 1+ _ _1+d-s

(z “d/dz) [; Yz(z) = z | wz_s(z) ,

so that (56) and (57) or (58) yield

erlir ey = Ty Geow, Gy > (62)

A T10T2 A O A i T S B

Substituting this into (55) and making use of (33) or (37) we find an
expansion equivalent to the expansion theorem for spherical waves

derived by Friedman and Russek7; apparent discrepancies are due to the
differing definitions of the spherical harmonics. For modified SPherical
Bessel functions the expressions corresponding to (62) become in view

of (B 2.7.19-22)

Hh
it

il(kr) ; ' o= 2(-)7 il, (krl)il}'(krz) s
(63)

Hh
]

A
K((kr) : f'=2(-)4iz’(kr1)le(kr2) s Ty > r,
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It should be borne in mind that the actual signs in the expansion (55)
are not necessarily those given in (62) or (63) in view of the changes
in sign occurring in (33) and (37).

The algebraic recurrence relations (48)-(52) are not directly
applicable to the operational expansion terms (55)~(58); it should,
nevertheless, be possible to derive recurrence relations for the functions
f'(() , 1f necessary involving more than three terms. Such relatioms
migﬁl lead to a considerable simplification in the evaluation of the

radial functions.
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Appendix: The Un-Normalized 3j-symbols

3-5

The theory of the Wigner 3j~-symbols is well established and

10’15; it may therefore

their values have been extensively tabulated
appear futile to return to the use of un-normalized harmonics and
3j-symbols associated with these. However the use of integers has its
advantages, compared with expressions involving square roots; and from
this point of view the symbols U introduced in (25) may be found useful.
Their definition is easily generalized to any set of integral or half-
integral parameters (js,ms) } provided my + m, + my = 0 and all the
(js+ms) as well as 2 A= j1 + j2 + j3 are integers and the triangular

relation (39) holds for the j's . Using the abbreviations (27) we define

iy 30 3 A2 A 22 22
Um1m2m3>=z(') #h L G_ 2 >(2+m3- )
1 M2 ™ s 1M R Nl AN R Ml g

where

6= 2j, - m, +m, = m + 2m = -m -2m2 (mod 2) (A2)

1 3 1 3 1

and the sum is to be taken over all integral or half-integral values
of /& (depending on.‘21) for which all the binomial coefficients are
non-zero. The relation of these quantities to Wigner's normalized
3j~symbols "7 is given in (26); like the latter they are invariant
under a cyclic permutation of (1, 2, 3) and are multiplied by (-)2A
for a non-cyclic permutation or for the transformation m=- -m . On
the other hand the constant numerator in the sum (Al) destroys the
Regge symmetries16 of the symbols under permutation of the triples
2;"s’js-i-ms s °

Against this loss of symmetry, the definition (Al) has the advantage

j = m
)Js

that all the terms in the sum are integers which even for J = 32 never

exceed 109. For iy = Jp + 35, i.e. A.=0 , the sum reduces to a

1
single term

16 T. Regge, Nuovo Cimento 10, 545 (1958).
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In view of the property of the binomial coefficients

N - N-1 + N-1 (A4)
M M-1 M
the definition (Al) entails the recurrence formula

. (31 B33\ [ivdamist | (Ipdrhis ; 5
™ M2 T3 mysmy~¥,myty my Bytesmymd
the equivalent formula for the normalized 3j-symbols has been given by
EdmondsA. Apart from signs, tﬁe relation (A5) is similar to that ob-
taining in Pascal's triangle; and since for j3 = 0 the absolute values
of U are binomial coefficients, the whole set of coefficients U can
be regarded as a five-dimensional generalization of Pascal's triangle.
The numbers can thﬁs be generated by means of (A3) and (A5); for work
with electronic computers this would appear more convenient than the
more usual representation of the squares of the normalized symbols as
products and ratios of powers of primeslo’ls. A more detailed discus-

sion of the symbols U will be given elsewhere.




